Identification of Effective Optimal Network Feature Set for Probing Attack Detection Using PCA Method

نویسندگان

  • Peyman Kabiri
  • Gholam Reza Zargar
چکیده

Existing intrusion detection techniques emphasize on building intrusion detection model based on all features provided. But not all the features are relevant ones and some of them are redundant and useless. This paper proposes and investigates identification of effective network features for Probing attack detection using PCA method to determine an optimal feature set. An appropriate feature set helps to build efficient decision model as well as a reduced feature set. Feature reduction will speed up the training and the testing process considerably. This paper proposes a strategy to focus on intrusion detection involving statistical analysis of both attack and normal traffics based on the DARPA 1998 dataset as the training data. DARPA 1998 dataset was also used in the experiments as the test data. Experimental results show a reduction in training and testing time while maintaining the detection accuracy within acceptable range.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Category-Based Intrusion Detection Using PCA

Existing Intrusion Detection Systems (IDS) examine all the network features to detect intrusion or misuse patterns. In feature-based intrusion detection, some selected features may found to be redundant, useless or less important than the rest. This paper proposes a category-based selection of effective parameters for intrusion detection using Principal Components Analysis (PCA). In this paper,...

متن کامل

Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification

Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...

متن کامل

Category-Based Selection of Effective Parameters for Intrusion Detection

Existing intrusion detection techniques emphasize on building intrusion detection model based on all features provided. In feature-based intrusion detection, some selected features may found to be redundant and useless. Feature selection can reduce the computation power requirements and model complexity. This paper proposes a category-based selection of effective parameters for intrusion detect...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJWA

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010